Суперпозиции принцип - significado y definición. Qué es Суперпозиции принцип
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Суперпозиции принцип - definición

Суперпозиции принцип

СУПЕРПОЗИЦИИ ПРИНЦИП         
1) в классической физике: результирующий эффект от нескольких независимых воздействий; представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности. Справедлив для систем или полей, описываемых линейными уравнениями; важен в механике, теории колебаний и волн, теории физических полей.2) В квантовой механике принцип суперпозиции относится к волновым функциям: если физическая система может находиться в состояниях, описываемых двумя (или несколькими) волновыми функциями, то она может также находиться в состоянии, описываемом любой линейной комбинацией этих функций (принцип суперпозиции состояний).
Суперпозиции принцип         

принцип наложения, 1) допущение, согласно которому если составляющие сложного процесса воздействия взаимно не влияют друг на друга, то результирующий эффект будет представлять собой сумму эффектов, вызываемых каждым воздействием в отдельности. С. п. строго применим к системам, поведение которых описывается линейными соотношениями (так называемые линейные системы). Например, если среда, в которой распространяется волна 5 линейна, то есть её свойства не меняются под действием возмущений, создаваемых волной, то все эффекты, вызываемые негармонической волной, могут быть определены как сумма эффектов, создаваемых каждой из её гармонических составляющих: S = S1 + + S2 + S3 + ...

С. п. играет исключительную роль в механике (например, векторное сложение по правилу параллелограмма), в теории колебаний, теории цепей, квантовой механике и других разделах физики и техники. 2) В теории классических полей и квантовой теории - положение, согласно которому суперпозиция (то есть результат суммирования, наложения друг на друга) любых допустимых в данных условиях состояний физической системы (или возможных процессов в ней) является также допустимым состоянием (или соответственно возможным процессом). Так, классическое электромагнитное поле в вакууме удовлетворяет С.п.: сумма любого числа физически реализуемых полей есть тоже физически реализуемое электромагнитное поле. В силу С.п. электромагнитное поле, созданное совокупностью электрических зарядов и токов, равно сумме полей, создаваемых этими зарядами и токами по отдельности. Слабое гравитационное поле также с хорошей точностью подчиняется С. п.

В классической физике С. п. - приближённый принцип, вытекающий из линейности уравнений движения соответствующих систем (что обычно является хорошим приближением для описания реальных систем), например Максвелла уравнений (См. Максвелла уравнения) для электромагнитного поля. Таким образом, он вытекает из более глубоких динамических принципов и поэтому не является фундаментальным. Он и не универсален. Так, достаточно сильное гравитационное поле не удовлетворяет С. п., поскольку оно описывается нелинейными уравнениями Эйнштейна (см. Тяготение); макроскопическое электромагнитное поле в веществе, строго говоря, также не подчиняется С. п. в силу зависимости (иногда существенной) диэлектрической и магнитной проницаемостей от внешнего поля (например, в ферромагнетике (См. Ферромагнетики)) и т. д.

В квантовой механике С. п. - фундаментальный принцип, один из основных её постулатов, определяющий вместе с Неопределённостей соотношением структуру математического аппарата теории. Из С. п. следует, например, что состояния квантовомеханической системы должны изображаться векторами линейного пространства (см. Квантовая механика), в частности волновыми функциями (См. Волновая функция); что Операторы физических величин должны быть линейными и т. д. С. п. утверждает, что если квантовомеханическая система может находиться в состояниях, описываемых волновыми функциями ψ12,...,ψn, то физически допустимой будет и суперпозиция этих состояний, то есть состояние, изображаемое волновой функцией

ψ = c1ψ1 + c2ψ2 + . . . + сnψn,

где c1, c2,..., cn - произвольные комплексные числа.

Из С. п. следует, что любая волновая функция может быть разложена в сумму (вообще говоря, бесконечную) собственных функций оператора любой физической величины; при этом квадраты модулей коэффициентов в разложении имеют смысл вероятностей обнаружить на опыте соответствующие значения этой величины. Суперпозиция состояний ψi определяется, однако, не только модулями коэффициентов ci, но и их относительными фазами (при различных относительных фазах чисел сi, результирующие состояния оказываются различными). Поэтому суперпозиция ψ =i ci ψi является результатом интерференции состояний ψi (см., например, Дифракция частиц). Квантовый С. п. лишён наглядности, характерной для С. п. в классической физике, так как в квантовой теории в суперпозиции участвуют (складываются) альтернативные, с классической точки зрения взаимоисключающие друг друга состояния. С. п. отражает волновую природу микрочастиц и выполняется в нерелятивистской квантовой механике без исключений.

В релятивистской квантовой теории, рассматривающей процессы, в которых могут происходить взаимопревращения частиц, С. п. должен быть дополнен так называемыми правилами суперотбора. Так, суперпозиции состояний с разными значениями электрического, барионного, лептонного зарядов не предполагаются физически реализуемыми. Реализуемость таких суперпозиций означала бы, например, что физические свойства пучка частиц, в котором в некоторой пропорции присутствуют электроны и позитроны, не определяются однозначно динамическими характеристиками этих частиц, то есть что возможна интерференция состояний с разными значениями зарядов. Однако такая интерференция никогда не наблюдалась на опыте. Поэтому операторы физических величин не должны менять заряды. Это уточнение С. п. в релятивистской квантовой теории накладывает на матричные элементы операторов определённые ограничения, которые и называют правилами суперотбора.

Лит.: Дирак П. А. М., Принципы квантовой механики, пер. с англ., М., 1960; Л андау Л. Д., Лифшиц Е. М., Квантовая механика, 3 изд., М., 1974; Швебер С., Введение в релятивистскую квантовую теорию поля, [пер. с англ.], М., 1963.

О. И. Завьялов.

Принцип суперпозиции         
Принцип суперпозиции — допущение, согласно которому результирующий эффект нескольких независимых воздействий есть сумма эффектов, вызываемых каждым воздействием в отдельности. Справедлив для систем или полей, которые описываются линейными уравнениями.

Wikipedia

Принцип суперпозиции

Принцип суперпозиции — допущение, согласно которому результирующий эффект нескольких независимых воздействий есть сумма эффектов, вызываемых каждым воздействием в отдельности. Справедлив для систем или полей, которые описываются линейными уравнениями. Важен во многих разделах классической физики: в механике, теории колебаний и волн, теории физических полей.

Конкретизация формулировки возможна применительно к определённой сфере. Например, в механике в самой простой формулировке принцип суперпозиции гласит:

  • результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил;
  • любое сложное действие можно разделить на два и более простых.

Наиболее известен принцип суперпозиции в электростатике: напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть векторная сумма напряженности полей отдельных зарядов. Принцип суперпозиции может принимать и иные формулировки, в том числе:

  • энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц — в системе нет многочастичных взаимодействий;
  • уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

¿Qué es СУПЕРПОЗИЦИИ ПРИНЦИП? - significado y definición